If x is a positive real number such that $4 \log_{10} x + 4 \log_{100} x + 8 \log_{1000} x = 13$, then the greatest integer not exceeding x, is
If $(a + b \sqrt{n})$ is the positive square root of $(29 - 12\sqrt{5})$, where a and b are integers, and n is a natural number, then the maximum possible value of $(a + b + n)$ is
If a, b and c are positive real numbers such that $a > 10$ $\geq b$$ \geq c$ and $\cfrac{\log_8 (a + b)}{\log_2c} + \cfrac{\log_{27} (a - b)}{\log_3c} = \cfrac{2}{3}$, then the greatest possible integer value of a is
If $(x + 6\sqrt{2})^{\cfrac{1}{2}} - (x - 6\sqrt{2})^{\cfrac{1}{2}} = 2\sqrt{2}$, then x equals
If $(a + b\sqrt{3})^2 = 52 + 30\sqrt{3}$, where a and b are natural numbers, then $a + b$ equals
The sum of all distinct real values of x that satisfy the equation $10^x + \cfrac{4}{10^x} = \cfrac{81}{2}$, is
If $3^a = 4, 4^b = 5, 5^c = 6, 6^d = 7, 7^e = 8$ and $8^f = 9$, then the value of the product abcdef is
If x and y are positive real numbers such that $\log _x\left(x^2+12\right)=4$ and $3 \log _y x=1$ , then x+y equals
If $\sqrt{5 x+9}+\sqrt{5 x-9}=3(2+\sqrt{2})$, then $\sqrt{10 x+9}$ is equal to
For some positive real number x , if $\log _{\sqrt{3}}(x)+\frac{\log _x(25)}{\log _x(0.008)}=\frac{16}{3}$, then the value of $\log _3\left(3 x^2\right)$ is
If x is a positive real number such that $x^8+\left(\frac{1}{x}\right)^8=47$, then the value of $x^9+\left(\frac{1}{x}\right)^9$ is
If $\left(\sqrt{\frac{7}{5}}\right)^{3 x-y}=\frac{875}{2401}$ and $\left(\frac{4 a}{b}\right)^{6 x-y}=\left(\frac{2 a}{b}\right)^{y-6 x}$, for all non-zero real values of a and b, then the value of x + y is
If 5 - $\log _{10} \sqrt{1+x}$ + 4$\log _{10} \sqrt{1-x}$ = $\log _{10} \frac{1}{\sqrt{1-x^{2}}}$, then 100 x equals
If $log_{2}$[3 + $log_{3}${4 + $log_{4}$(x - 1)}] - 2 = 0 then 4x equals
For a real number a, if $\frac{\log _{15} a+\log _{32} a}{\left(\log _{15} a\right)\left(\log _{32} a\right)}=$ = 4 then a must lie in the range
If y is a negative number such that $2^{y^{2}log_{3}5}$ = $5^{log_{2}3}$, then y equals
Let $log_{a}$30 = A, $log_{a}\frac{5}{3}$ = -B and $log_{2}$a = $\frac{1}{3}$ , then $log_{3}$a equals
The number of distinct integers $n$ for which $\log_{\left(\frac{1}{4}\right)}(n^2 - 7n + 11) $> $0$, is
If $\log_{64}x^{2}+\log_{8}\sqrt{y}+3\log_{512}(\sqrt{y}z)=4$ where x, y and z are positive real numbers, then the minimum possible value of $(x+y+z)$ is
The sum of all possible real values of x for which $\log_{x-3}(x^{2}-9)=\log_{x-3}(x+1)+2,$ is