Question 1.

If x and y are positive real numbers such that logx(x2+12)=4\log _x\left(x^2+12\right)=4 and 3logyx=13 \log _y x=1 , then x+y equals

A
20
B
11
C
68
D
10
Rate this Solution
Next Question

Question Explanation

Text Explanation

Given:

logx(x2+12)=4 \log_{x}(x^2 + 12) = 4

x2+12=x4 x^2 + 12 = x^4

x4x212=0 x^4 - x^2 - 12 = 0

x44x2+3x212=0 x^4 - 4x^2 + 3x^2 - 12 = 0

x2(x24)+3(x24)=0 x^2(x^2 - 4) + 3(x^2 - 4) = 0

(x24)(x2+3)=0     (x^2 - 4)(x^2 + 3) = 0 \implies since xx is a positive real number, x=2x = 2

Now, given 3logyx=1 3 \log_{y} x = 1

logyx=13 \log_{y} x = \frac{1}{3}

x=y13 x = y^{\frac{1}{3}}

y=x3 y = x^3

y=8 y = 8

x+y=2+8=10 x + y = 2 + 8 = 10

Video Explanation
XAT 2026 Full Course - Enroll Now for Best XAT Preparation
CAT LRDI 100 Recorded Course - Master Logical Reasoning and Data Interpretation
HOME
XAT Sankalp Sale
Quant Revision Book
More
YoutubeWhatsapp