Question 12.

If 3a=4,4b=5,5c=6,6d=7,7e=83^a = 4, 4^b = 5, 5^c = 6, 6^d = 7, 7^e = 8 and 8f=98^f = 9, then the value of the product abcdef is

A
B
C
D

Question Explanation

Text Explanation

Taking a log for each of the expressions, we get the following:

log34=a, log45=b, log56=c, log67=d, log78=e, log89=f\log_34=a,\ \log_45=b,\ \log_56=c,\ \log_67=d,\ \log_78=e,\ \log_89=f

The expression abcefabcef would then be: log34× log45× log56× log67× log78× log89\log_34\times\ \log_45\times\ \log_56\times\ \log_67\times\ \log_78\times\ \log_89

Next, we can use this property of log: logbalogbc=logca\frac{\log_ba}{\log_bc}=\log_ca

Using this, we get:

log 4log 3× log 5log 4× log 6log 5× log 7log 6× log 8log 7× log 9log 8\frac{\log\ 4}{\log\ 3}\times\ \frac{\log\ 5}{\log\ 4}\times\ \frac{\log\ 6}{\log\ 5}\times\ \frac{\log\ 7}{\log\ 6}\times\ \frac{\log\ 8}{\log\ 7}\times\ \frac{\log\ 9}{\log\ 8}

All the terms will cancel out except: log 9log 3=log39=2\frac{\log\ 9}{\log\ 3}=\log_39=2

Therefore, 2 is the correct answer. 

Video Explanation
CAT 2025 Score Booster Course - Enroll Now for Best CAT Preparation
CAT LRDI 100 Recorded Course - Master Logical Reasoning and Data Interpretation
HOME
CAT Sankalp Sale
Quant Revision Book
More
YoutubeWhatsapp