Question 2.

If (a+bn)(a + b \sqrt{n}) is the positive square root of (29125)(29 - 12\sqrt{5}), where a and b are integers, and n is a natural number, then the maximum possible value of (a+b+n)(a + b + n) is

A
18
B
22
C
4
D
6

Question Explanation

Text Explanation

(a+bn)(a + b \sqrt{n}) is the positive square root of (29125)(29 - 12\sqrt{5})

So 29125=(a+bn)229-12\sqrt{5}=\left(a+b\sqrt{n}\right)^2

29125=a2+b2n+2abn29-12\sqrt{5}=a^2+b^2n+2ab\sqrt{n}

a2+b2n=29a^2+b^2n=29 and

abn=65ab\sqrt{n}=-6\sqrt{5}

a2b2n=180a^2b^2n=180

b2n=180a2b^2n=\frac{180}{a^2}

Substituting this in the above equation, 

a2+180a2=29a^2+\frac{180}{a^2}=29

a429a2+180=0a^4-29a^2+180=0

a2=(29±2924(180))2a^2=\frac{\left(29\pm\sqrt{29^2-4\left(180\right)}\right)}{2}

a2=(29+841720)2a^2=\frac{\left(29+\sqrt{841-720}\right)}{2}

a2=9 or 20a^2=9\ or\ 20

That means, one of a2 or b2na^2\ or\ b^2n is 9 and 20. 

We also have, abn=65ab\sqrt{n}=-6\sqrt{5} that means one of a or b should be negative

And also the fact that this is a positive square root,

And we need to maximise the value of a, b and n. 

We can have a=-3, b=1 and n=20. 

This satisfies all the above equations, and the value of a+b+n=18. 

Video Explanation
CAT 2025 Score Booster Course - Enroll Now for Best CAT Preparation
CAT LRDI 100 Recorded Course - Master Logical Reasoning and Data Interpretation
HOME
CAT Sankalp Sale
Quant Revision Book
More
YoutubeWhatsapp