Question 4.

If a, b and c are positive real numbers such that a > 10 b\geq bc \geq c and log8(a+b)log2c+log27(ab)log3c=23\cfrac{\log_8 (a + b)}{\log_2c} + \cfrac{\log_{27} (a - b)}{\log_3c} = \cfrac{2}{3}, then the greatest possible integer value of a is

A
B
C
D

Question Explanation

Text Explanation

The first term of the expression can be rewritten as 13log2(a+b)log2c\frac{\frac{1}{3}\log_2\left(a+b\right)}{\log_2c}

Using the property mnlogab=logabmn\frac{m}{n}\log_ab=\log_ab^{\frac{m}{n}} this can be rewritten as

log2(a+b)13log2c\frac{\log_2\left(a+b\right)^{\frac{1}{3}}}{\log_2c}

And finally using the property logbalogbc=logca\frac{\log_ba}{\log_bc}=\log_ca, we can rewrite the expression as 

logc(a+b)13\log_c\left(a+b\right)^{\frac{1}{3}}

Doing identical operations in the second term, we get the entire left-hand side to be:

logc(a+b)13+logc(ab)13\log_c\left(a+b\right)^{\frac{1}{3}}+\log_c\left(a-b\right)^{\frac{1}{3}}

Using property logca+logcb=logc(ab)\log_ca+\log_cb=\log_c\left(ab\right) we get

logc[(a+b)13(ab)13]\log_c\left[\left(a+b\right)^{\frac{1}{3}}\left(a-b\right)^{\frac{1}{3}}\right]

logc[(a+b)(ab)]13\log_c\left[\left(a+b\right)\left(a-b\right)\right]^{\frac{1}{3}}

logc[(a2b2)]13\log_c\left[\left(a^2-b^2\right)\right]^{\frac{1}{3}}

This expression is given to be equal to 2/3

Using the definition of log: logcN=a \log_cN=a\ which is ca=Nc^a=N

we get:c23=(a2b2)13c^{\frac{2}{3}}=\left(a^2-b^2\right)^{\frac{1}{3}}

Cubing both sides:

c2=a2b2c^2=a^2-b^2

Finally giving a2=b2+c2a^2=b^2+c^2

We have upper limits on b and c as 10, and we want to maximize the value of a squared. 

This can be thought of as a right-angled triangle, and the value of a will be maximum when both b and c are equal to 10, giving a2=200a^2=200, but this would not give an integer value of a

We need to adjust a2a^2 to the biggest square less than 200, which is 196

Giving the value of aa as 14. 

Therefore, 14 is the correct answer.  

Video Explanation
CAT 2025 Score Booster Course - Enroll Now for Best CAT Preparation
CAT LRDI 100 Recorded Course - Master Logical Reasoning and Data Interpretation
HOME
CAT Sankalp Sale
Quant Revision Book
More
YoutubeWhatsapp