Question 22.

If x is a positive real number such that 4log10x+4log100x+8log1000x=134 \log_{10} x + 4 \log_{100} x + 8 \log_{1000} x = 13, then the greatest integer not exceeding x, is

A
B
C
D
Previous Question
Rate this Solution

Question Explanation

Text Explanation

Using the logarithmic property that logapb=1plogab\log_{a^p}b=\frac{1}{p}\log_ab

4log10x+4log100x+8log1000x=134 \log_{10} x + 4 \log_{100} x + 8 \log_{1000} x = 13

Can be written as 

4log10x+2log10x+83log10x=134\log_{10}x+2\log_{10}x+\frac{8}{3}\log_{10}x=13

263log10x=13\frac{26}{3}\log_{10}x=13

log10x=1.5\log_{10}x=1.5

x=101.5x=10^{1.5}

x=1000x=\sqrt{1000}

[1000]=31\left[\sqrt{1000}\right]=31

Where [.] is Greatest Integer Function since that is what is asked in the question, 

31 is the greatest integer that does not exceed x. 

Video Explanation
CAT 2025 Score Booster Course - Enroll Now for Best CAT Preparation
CAT LRDI 100 Recorded Course - Master Logical Reasoning and Data Interpretation
HOME
CAT Sankalp Sale
Quant Revision Book
More
YoutubeWhatsapp