It is given that log3(x)+log3(0.008)log3(25)=316, which can be written as:
=> 2log3x+log0.00825=316
=> 2log3x+log1000825=316
=> 2log3x+log125125=316
=> 2log3x+log5−3(5)2=316
=> 2log3x−32=316
=> 2log3x=316+32
=> 2log3x=6
=> log3x2=6⇒x2=36
Hence, log3(3⋅x2)=log3(3⋅36)=log337=7