Question 3.

Let logalog_{a}30 = A, loga53log_{a}\frac{5}{3} = -B and log2log_{2}a = 13\frac{1}{3} , then log3log_{3}a equals

A
2A+B3\frac{2}{A+B-3}
B
A+B32\frac{A+B-3}{2}
C
A+B2\frac{A+B}{2} - 3
D
2A+B\frac{2}{A+B} - 3

Question Explanation

Text Explanation

loga30=A  or  loga5+loga2+loga3=A...(1)\log_a 30 = A \ \text{ or }\ \log_a 5 + \log_a 2 + \log_a 3 = A \quad ...(1)

loga(53)=B  or  loga3loga5=B...(2)\log_a \left(\frac{5}{3}\right) = -B \ \text{ or }\ \log_a 3 - \log_a 5 = B \quad ...(2)

and finally loga2=3\text{and finally } \log_a 2 = 3

Substituting this in (1) we get loga5+loga3=A3\text{Substituting this in (1) we get } \log_a 5 + \log_a 3 = A - 3

Now we have two equations in two variables (1) and (2). On solving we get\text{Now we have two equations in two variables (1) and (2). On solving we get}

loga3=A+B32 or  log3a=2A+B3\log_a 3 = \frac{A + B - 3}{2} \quad \text{ or }\ \log_3 a = \frac{2}{A + B - 3}

Video Explanation
No video explanation yet — we're on it and uploading soon!
XAT 2026 Full Course - Enroll Now for Best XAT Preparation
CAT LRDI 100 Recorded Course - Master Logical Reasoning and Data Interpretation
HOME
XAT Sankalp Sale
Quant Revision Book
More
YoutubeWhatsapp