Question 4.

If x is a positive real number such that x8+(1x)8=47x^8+\left(\frac{1}{x}\right)^8=47, then the value of x9+(1x)9x^9+\left(\frac{1}{x}\right)^9 is

A
40540 \sqrt{5}
B
36536 \sqrt{5}
C
30530 \sqrt{5}
D
34534 \sqrt{5}

Question Explanation

Text Explanation

It is given that x8+(1x)8=47 x^8 + \left(\frac{1}{x}\right)^8 = 47 , which can be written as:

=> (x4)2+(1x4)2=47 \left(x^4\right)^2 + \left(\frac{1}{x^4}\right)^2 = 47

=> (x4+1x4)22x41x4=47 \left(x^4 + \frac{1}{x^4}\right)^2 - 2 \cdot x^4 \cdot \frac{1}{x^4} = 47

=> (x4+1x4)2=49 \left(x^4 + \frac{1}{x^4}\right)^2 = 49

=> x4+1x4=7 x^4 + \frac{1}{x^4} = 7

Similarly, x4+1x4=7 x^4 + \frac{1}{x^4} = 7 can be expressed as:

=> (x2)2+(1x2)2=7 \left(x^2\right)^2 + \left(\frac{1}{x^2}\right)^2 = 7

=> (x2+1x2)22x21x2=7 \left(x^2 + \frac{1}{x^2}\right)^2 - 2 \cdot x^2 \cdot \frac{1}{x^2} = 7

=> (x2+1x2)2=9 \left(x^2 + \frac{1}{x^2}\right)^2 = 9

=> x2+1x2=3 x^2 + \frac{1}{x^2} = 3

By the same logic, we get x+1x=5 x + \frac{1}{x} = \sqrt{5}

Now, x3+1x3=(x+1x)33x1x(x+1x) x^3 + \frac{1}{x^3} = \left(x + \frac{1}{x}\right)^3 - 3 \cdot x \cdot \frac{1}{x}\left(x + \frac{1}{x}\right)

=> x3+1x3=(5)335=25 x^3 + \frac{1}{x^3} = \left(\sqrt{5}\right)^3 - 3\sqrt{5} = 2\sqrt{5}

By the same logic, we can say that

=> x9+1x9=(x3+1x3)33x31x3(x3+1x3) x^9 + \frac{1}{x^9} = \left(x^3 + \frac{1}{x^3}\right)^3 - 3 \cdot x^3 \cdot \frac{1}{x^3}\left(x^3 + \frac{1}{x^3}\right)

=> x9+1x9=(25)33(25) x^9 + \frac{1}{x^9} = \left(2\sqrt{5}\right)^3 - 3\left(2\sqrt{5}\right)

=> x9+1x9=40565=345 x^9 + \frac{1}{x^9} = 40\sqrt{5} - 6\sqrt{5} = 34\sqrt{5}

Video Explanation
XAT 2026 Full Course - Enroll Now for Best XAT Preparation
CAT LRDI 100 Recorded Course - Master Logical Reasoning and Data Interpretation
HOME
XAT Sankalp Sale
Quant Revision Book
More
YoutubeWhatsapp