Question 6.

For a real number a, if log15a+log32a(log15a)(log32a)=\frac{\log _{15} a+\log _{32} a}{\left(\log _{15} a\right)\left(\log _{32} a\right)}= = 4 then a must lie in the range

A
4 < a < 5
B
3 < a < 4
C
a > 5
D
2 < a < 3

Question Explanation

Text Explanation

log15a+log32a(log15a×log32a)\frac { \log _ { 15 } ^ { a } + \log _ { 32 } ^ { a } } { \left( \log _ { 15 } ^ { a } \times \log _ { 32 } ^ { a } \right) } = 4

we get loga\log⁡_a(log⁡ 32 + log⁡ 15) = 4(log⁡ a)2)^2

we get (log⁡ 32 +log⁡ 15)=4log⁡a

= log⁡480 = loga4log⁡ a^4

= a4a^4 = 480480

so we can say a is between 4 and 5 .

Video Explanation
XAT 2026 Full Course - Enroll Now for Best XAT Preparation
CAT LRDI 100 Recorded Course - Master Logical Reasoning and Data Interpretation
HOME
XAT Sankalp Sale
Quant Revision Book
More
YoutubeWhatsapp