Question 4.

If 5 - log101+x\log _{10} \sqrt{1+x} + 4log101x\log _{10} \sqrt{1-x} = log1011x2\log _{10} \frac{1}{\sqrt{1-x^{2}}}, then 100 x equals

A
B
C
D

Question Explanation

Text Explanation

5log101+x+4log101x=log1011x25 - \log_{10}\sqrt{1+x} + 4\log_{10}\sqrt{1-x} = \log_{10}\frac{1}{\sqrt{1-x^2}}

We can re-write the equation as:

5log101+x+4log101x=log10(1+x×1x)15 - \log_{10}\sqrt{1+x} + 4\log_{10}\sqrt{1-x} = \log_{10}\left(\sqrt{1+x}\times\sqrt{1-x}\right)^{-1}

5log101+x+4log101x=(1)log10(1+x)+(1)log10(1x)5 - \log_{10}\sqrt{1+x} + 4\log_{10}\sqrt{1-x} = (-1)\log_{10}(\sqrt{1+x}) + (-1)\log_{10}(\sqrt{1-x})

5=log101+x+log101+xlog101x4log101x5 = -\log_{10}\sqrt{1+x} + \log_{10}\sqrt{1+x} - \log_{10}\sqrt{1-x} - 4\log_{10}\sqrt{1-x}

5=5log101x5 = -5\log_{10}\sqrt{1-x}

1x=110\sqrt{1-x} = \frac{1}{10}

Squaring both sides:

(1x)2=1100(\sqrt{1-x})^2 = \frac{1}{100}

 x=11100=99100\therefore\ x = 1 - \frac{1}{100} = \frac{99}{100}

Hence, 100x=100×99100100x = 100 \times \frac{99}{100} = 99

Video Explanation
XAT 2026 Full Course - Enroll Now for Best XAT Preparation
CAT LRDI 100 Recorded Course - Master Logical Reasoning and Data Interpretation
HOME
XAT Sankalp Sale
Quant Revision Book
More
YoutubeWhatsapp