Question 2.

If log2log_{2}[3 + log3log_{3}{4 + log4log_{4}(x - 1)}] - 2 = 0 then 4x equals

A
B
C
D

Question Explanation

Text Explanation

We have

log2{3+log3{4+log4(x1)}}=2\log_2 \{ 3 + \log_3 \{ 4 + \log_4 (x - 1) \} \} = 2

we get  

3+log3{4+log4(x1)}=43 + \log_3 \{ 4 + \log_4 (x - 1) \} = 4

we get  

log3(4+log4(x1))=1\log_3 (4 + \log_4 (x - 1)) = 1

we get  

4+log4(x1)=34 + \log_4 (x - 1) = 3

log4(x1)=1\log_4 (x - 1) = -1

x1=41x - 1 = 4^{-1}

x=14+1=54x = \frac{1}{4} + 1 = \frac{5}{4}

4x = 5

Video Explanation
XAT 2026 Full Course - Enroll Now for Best XAT Preparation
CAT LRDI 100 Recorded Course - Master Logical Reasoning and Data Interpretation
HOME
XAT Sankalp Sale
Quant Revision Book
More
YoutubeWhatsapp