Question 2.ShareReportIf log2log_{2}log2[3 + log3log_{3}log3{4 + log4log_{4}log4(x - 1)}] - 2 = 0 then 4x equalsABCDBackspace7894561230.-Clear AllSubmit Previous QuestionRate this SolutionNext Question Question ExplanationText ExplanationWe havelog2{3+log3{4+log4(x−1)}}=2\log_2 \{ 3 + \log_3 \{ 4 + \log_4 (x - 1) \} \} = 2log2{3+log3{4+log4(x−1)}}=2we get 3+log3{4+log4(x−1)}=43 + \log_3 \{ 4 + \log_4 (x - 1) \} = 43+log3{4+log4(x−1)}=4we get log3(4+log4(x−1))=1\log_3 (4 + \log_4 (x - 1)) = 1log3(4+log4(x−1))=1we get 4+log4(x−1)=34 + \log_4 (x - 1) = 34+log4(x−1)=3log4(x−1)=−1\log_4 (x - 1) = -1log4(x−1)=−1x−1=4−1x - 1 = 4^{-1}x−1=4−1x=14+1=54x = \frac{1}{4} + 1 = \frac{5}{4}x=41+1=454x = 5Video Explanation