Question 21.

If y is a negative number such that 2y2log352^{y^{2}log_{3}5} = 5log235^{log_{2}3}, then y equals

A
log2log_{2} (1/3)
B
log2log_{2} (1/5)
C
log2-log_{2} (1/3)
D
log2-log_{2} (1/5)

Question Explanation

Text Explanation

2Y2(log35)=5Y2(log32)2^{Y^2 (\log_3 5)} = 5^{Y^2 (\log_3 2)}

Given,  

5Y2(log32)=5(log23)5^{Y^2 (\log_3 2)} = 5^{(\log_2 3)}

Y2(log32)=(log23)Y^2 (\log_3 2) = (\log_2 3)  

Y2=(log23)2Y^2 = (\log_2 3)^2

Y=(log23)Y = (-\log_2 3) or (log23)(\log_2 3)

Since YY is a negative number,  

Y=(log23)=(log213)Y = (-\log_2 3) = (\log_2 \tfrac{1}{3})

Video Explanation
No video explanation yet — we're on it and uploading soon!
XAT 2026 Full Course - Enroll Now for Best XAT Preparation
CAT LRDI 100 Recorded Course - Master Logical Reasoning and Data Interpretation
HOME
XAT Sankalp Sale
Quant Revision Book
More
YoutubeWhatsapp