Question 33.

The number of solutions to the equation x(6x2+1)=5x2\mid x \mid (6x^2 + 1) = 5x^2 is

A
B
C
D

Question Explanation

Text Explanation

For x < 0,  

x(6x2+1)=5x2-x(6x^{2} + 1) = 5x^{2}  

(6x2+1)=5x\Rightarrow (6x^{2} + 1) = -5x  

(6x2+5x+1)=0\Rightarrow (6x^{2} + 5x + 1) = 0  

(6x2+3x+2x+1)=0\Rightarrow (6x^{2} + 3x + 2x + 1) = 0  

(3x+1)(2x+1)=0    x=13  or  x=12\Rightarrow (3x+1)(2x+1)=0 \;\Rightarrow\; x = -\frac{1}{3} \;\text{or}\; x = -\frac{1}{2}

For x=0x = 0, LHS = RHS = 0 (Hence, 1 solution)

For x > 0,  

x(6x2+1)=5x2x(6x^{2} + 1) = 5x^{2}  

(6x25x+1)=0\Rightarrow (6x^{2} - 5x + 1) = 0  

(3x1)(2x1)=0    x=13  or  x=12\Rightarrow (3x - 1)(2x - 1) = 0 \;\Rightarrow\; x = \frac{1}{3} \;\text{or}\; x = \frac{1}{2}

Hence, the total number of solutions = 5

Video Explanation
No video explanation yet — we're on it and uploading soon!
XAT 2026 Full Course - Enroll Now for Best XAT Preparation
CAT LRDI 100 Recorded Course - Master Logical Reasoning and Data Interpretation
HOME
XAT Sankalp Sale
Quant Revision Book
More
YoutubeWhatsapp