For x < 0,
−x(6x2+1)=5x2
⇒(6x2+1)=−5x
⇒(6x2+5x+1)=0
⇒(6x2+3x+2x+1)=0
⇒(3x+1)(2x+1)=0⇒x=−31orx=−21
For x=0, LHS = RHS = 0 (Hence, 1 solution)
For x > 0,
x(6x2+1)=5x2
⇒(6x2−5x+1)=0
⇒(3x−1)(2x−1)=0⇒x=31orx=21
Hence, the total number of solutions = 5