Question 29.

Let x and y be positive real numbers such that log5(x+y)+log5(xy)=3,\log_{5}{(x + y)} + \log_{5}{(x - y)} = 3, and log2ylog2x=1log23\log_{2}{y} - \log_{2}{x} = 1 - \log_{2}{3}. Then xyxy equals

A
150
B
25
C
100
D
250

Question Explanation

Text Explanation

We have, log5(x+y)+log5(xy)=3\log_{5}{(x + y)} + \log_{5}{(x - y)} = 3

=> x2y2=125x^2-y^2=125......(1)

log2ylog2x=1log23\log_{2}{y} - \log_{2}{x} = 1 - \log_{2}{3}

=>  yx\ \frac{\ y}{x}  23\ \frac{\ 2}{3}

=> 2x=3y  => x=  3y2\ \frac{\ 3y}{2}

On substituting the value of x in 1, we get

  5x24\ \frac{\ 5x^2}{4}=125

=>y=10, x=15

Hence xy=150

Video Explanation
No video explanation yet — we're on it and uploading soon!
XAT 2026 Full Course - Enroll Now for Best XAT Preparation
CAT LRDI 100 Recorded Course - Master Logical Reasoning and Data Interpretation
HOME
XAT Sankalp Sale
Quant Revision Book
More
YoutubeWhatsapp