Question 15.

If c=16xy+49yxc=\frac{16 x}{y}+\frac{49 y}{x} for some non-zero real numbers x and y, then c cannot take the value

A
-70
B
60
C
-50
D
-60

Question Explanation

Text Explanation

Let xy\dfrac{x}{y} be tt

Therefore, c=16t+49tc = 16t + \dfrac{49}{t}

Applying AM ≥ GM


16t+49t2(16t×49t)12\frac{16t + \frac{49}{t}}{2} \ge (16t \times \frac{49}{t})^{\frac12}

16t+49t5616t + \dfrac{49}{t} \ge 56

When tt is positive then cc is greater than equal to 5656.

When tt is negative then cc is less than equal to 56-56.

Therefore c(,56][56,]c \in (-\infty, -56] \cup [56, \infty]

Video Explanation
XAT 2026 Full Course - Enroll Now for Best XAT Preparation
CAT LRDI 100 Recorded Course - Master Logical Reasoning and Data Interpretation
HOME
XAT Sankalp Sale
Quant Revision Book
More
YoutubeWhatsapp