Question 13.

The product of two positive numbers is 616. If the ratio of the difference of their cubes to the cube of their difference is 157:3, then the sum of the two numbers is

A
58
B
85
C
50
D
95

Question Explanation

Text Explanation

Assume the numbers are a and b, then ab=616

We have,    a3b3(ab)3\ \ \frac{\ a^3-b^3}{\left(a-b\right)^3} =   1573\ \frac{\ 157}{3}

=>  3(a3b3) = 157(a3b3+3ab(ba))\ 3\left(a^3-b^3\right)\ =\ 157\left(a^3-b^3+3ab\left(b-a\right)\right)

=> 154(a3b3)+3157ab(ba)154\left(a^3-b^3\right)+3*157*ab\left(b-a\right) = 0

=> 154(a3b3)+3616157(ba)154\left(a^3-b^3\right)+3*616*157\left(b-a\right) = 0     (ab=616)

=>a3b3+(3× 4× 157(ba))a^3-b^3+\left(3\times\ 4\times\ 157\left(b-a\right)\right)  (154*4=616)

=> (ab)(a2+b2+ab) = 3× 4× 157(ab)\left(a-b\right)\left(a^2+b^2+ab\right)\ =\ 3\times\ 4\times\ 157\left(a-b\right)

=> a2+b2+ab = 3× 4× 157a^2+b^2+ab\ =\ 3\times\ 4\times\ 157

Adding ab=616 on both sides, we get

a2+b2+ab +ab= 3× 4× 157+616a^2+b^2+ab\ +ab=\ 3\times\ 4\times\ 157+616

=> (a+b)2= 3× 4× 157+616\left(a+b\right)^2=\ 3\times\ 4\times\ 157+616 = 2500

=> a+b=50

Video Explanation
No video explanation yet — we're on it and uploading soon!
XAT 2026 Full Course - Enroll Now for Best XAT Preparation
CAT LRDI 100 Recorded Course - Master Logical Reasoning and Data Interpretation
HOME
XAT Sankalp Sale
Quant Revision Book
More
YoutubeWhatsapp