Assume the numbers are a and b, then ab=616
We have, (a−b)3 a3−b3 = 3 157
=> 3(a3−b3) = 157(a3−b3+3ab(b−a))
=> 154(a3−b3)+3∗157∗ab(b−a) = 0
=> 154(a3−b3)+3∗616∗157(b−a) = 0 (ab=616)
=>a3−b3+(3× 4× 157(b−a)) (154*4=616)
=> (a−b)(a2+b2+ab) = 3× 4× 157(a−b)
=> a2+b2+ab = 3× 4× 157
Adding ab=616 on both sides, we get
a2+b2+ab +ab= 3× 4× 157+616
=> (a+b)2= 3× 4× 157+616 = 2500
=> a+b=50