Question 7.

Two circles, each of radius 4 cm, touch externally. Each of these two circles is touched externally by a third circle. If these three circles have a common tangent, then the radius of the third circle, in cm, is

A
12\frac{1}{\surd2}
B
π3\frac{\pi}{3}
C
2\surd2
D
1

Question Explanation

Text Explanation


Let 'h' be the height of the triangle ABC, semiperimeter(S) =4+4+r+4+4+r2=8+r= \frac{4+4+r+4+4+r}{2} = 8+ra=4+r,b=4+r,c=8a=4+r, b=4+r, c=8

Area of triangle ABC = s(sa)(sb)(sc)==\sqrt{\ s\cdot\left(s-a\right)\left(s-b\right)\left(s-c\right)}= ( 8+r)× 4× 4× r\sqrt{\left(\ 8+r\right)\times\ 4\times\ 4\times\ r}  12×(4+4)×height\ \frac{\ 1}{2}\times \left(4+4\right)\times height

Height (h) = (8+r)r\sqrt{\left(8+r\right)r}

Now, h+4=48+r+r=4h+4 = 4 \longrightarrow \sqrt{8+r} + r = 4 (Considering the height of the triangle)

(8+r)r\sqrt{\left(8+r\right)r}=4-r

16r=16

r=1 Alternatively,

AE@+EC2=AC242+(4r)2=(4+r)2r=1AE^@ + EC^2 = AC^2 \longrightarrow 4^2 + (4-r)^2 = (4+r)^2 \longrightarrow \longrightarrow \longrightarrow r=1

Video Explanation
No video explanation yet — we're on it and uploading soon!
XAT 2026 Full Course - Enroll Now for Best XAT Preparation
CAT LRDI 100 Recorded Course - Master Logical Reasoning and Data Interpretation
HOME
XAT Sankalp Sale
Quant Revision Book
More
YoutubeWhatsapp