Question 6.

Let a1,a2,...a_1, a_2, ... be integers such that a1a2+a3a4+....+(1)n1an=n,a_1 - a_2 + a_3 - a_4 + .... + (-1)^{n - 1} a_n = n, for all n1.n \geq 1. Then a51+a52+....+a1023a_{51} + a_{52} + .... + a_{1023} equals

A
0
B
1
C
10
D
-1

Question Explanation

Text Explanation

a1a2+a3a4+....+(1)n1an=na_1 - a_2 + a_3 - a_4 + .... + (-1)^{n - 1} a_n = n

It is clear from the above equation that when n is odd, the co-efficient of a is positive otherwise negative.

a1a2=2a_1 - a_2 = 2

a1=a2+2a_1 = a_2 + 2  

a1a2+a3=3a_1 - a_2 + a_3 = 3

On substituting the value of a1a_1 in the above equation, we get

a3a_3 = 1

a1a2+a3a4=4a_1 - a_2 + a_3 - a_4 = 4

On substituting the values of a1,a3a_1, a_3 in the above equation, we get

a4a_4 = -1

a1a2+a3a4+a5=5a_1 - a_2 + a_3 - a_4 +a_5 = 5

On substituting the values of a1,a3,a4a_1, a_3, a_4 in the above equation, we get

a5a_5 = 1

So we can conclude that a3,a5,a7....an+1a_3, a_5, a_7....a_{n+1} = 1 and a2,a4,a6....a2na_2, a_4, a_6....a_{2n} = -1

Now we have to find the value of a51+a52+....+a1023a_{51} + a_{52} + .... + a_{1023}

Number of terms = 1023=51+(n-1)1

n=973

There will be 486 even and 487 odd terms, so the value of a51+a52+....+a1023a_{51} + a_{52} + .... + a_{1023} = 486*-1+487*1=1

Video Explanation
No video explanation yet — we're on it and uploading soon!
XAT 2026 Full Course - Enroll Now for Best XAT Preparation
CAT LRDI 100 Recorded Course - Master Logical Reasoning and Data Interpretation
HOME
XAT Sankalp Sale
Quant Revision Book
More
YoutubeWhatsapp