Question 7.

If x and y are positive real numbers satisfying x + y = 102, then the minimum possible value of 2601(1 + 1x\frac{1}{x} )(1 + 1y\frac{1}{y} ) is

A
B
C
D

Question Explanation

Text Explanation

Now we have  

2601(1+1x)(1+1y)=2601(xy+y+x+1xy)2601\left(1 + \frac{1}{x}\right)\left(1 + \frac{1}{y}\right) = 2601\left(\frac{xy + y + x + 1}{xy}\right)

Now we know that x+y=102x + y = 102. Substituting it in the above equation:

2601(xy+y+x+1xy)=2601(103xy+1)2601\left(\frac{xy + y + x + 1}{xy}\right) = 2601\left(\frac{103}{xy} + 1\right)

Maximum value of xyxy can be found out by AM ≥ GM relationship:

x+y2xyorxy51orxy2601\frac{x + y}{2} \ge \sqrt{xy} \quad \text{or} \quad \sqrt{xy} \le 51 \quad \text{or} \quad xy \le 2601

Hence the maximum value of "xy" is 2601. Substituting in the above equation we get:

2601(103+26012601)=27042601\left(\frac{103 + 2601}{2601}\right) = 2704

Video Explanation
No video explanation yet — we're on it and uploading soon!
XAT 2026 Full Course - Enroll Now for Best XAT Preparation
CAT LRDI 100 Recorded Course - Master Logical Reasoning and Data Interpretation
HOME
XAT Sankalp Sale
Quant Revision Book
More
YoutubeWhatsapp