Question 5.

The value of logaablog_{a}\frac{a}{b} + logbbalog_{b}\frac{b}{a} , for 1 < a ≤ b cannot be equal to

A
-0.5
B
1
C
0
D
-1

Question Explanation

Text Explanation

On expanding the expression we get  

1logab+1logba1 - \log_a b + 1 - \log_b a or  2(logab+1logab)2 - \left( \log_a b + \frac{1}{\log_a b} \right)

Now applying the property of AM ≥ GM, we get that  

logab+1logab21\frac{\log_a b + \frac{1}{\log_a b}}{2} \ge 1 or  (logab+1logab)2\left( \log_a b + \frac{1}{\log_a b} \right) \ge 2

Hence from here we can conclude that the expression will always be equal to 00 or less than 00. Hence any positive value is not possible. So 11 is not possible.

Video Explanation
No video explanation yet — we're on it and uploading soon!
XAT 2026 Full Course - Enroll Now for Best XAT Preparation
CAT LRDI 100 Recorded Course - Master Logical Reasoning and Data Interpretation
HOME
XAT Sankalp Sale
Quant Revision Book
More
YoutubeWhatsapp