Question 5.

A function f maps the set of natural numbers to whole numbers, such that f(xy) = f(x)f(y) + f(x) + f(y) for all x, y and f(p) = 1 for every prime number p. Then, the value of f(160000) is

A
4095
B
8191
C
2047
D
1023

Question Explanation

Text Explanation

Looking at the additional information about the prime numbers should make one realise that they are the key to solving the question. 

f(16000) can be written as f(28× 54)f\left(2^8\times\ 5^4\right)

Now, we can try to find these individual values:

For any prime p: f(p)=1

f(p2)=f(p)f(p)+f(p)+f(p)=1+1+1=3f\left(p^2\right)=f\left(p\right)f\left(p\right)+f\left(p\right)+f\left(p\right)=1+1+1=3

f(p3)=f(p2)f(p)+f(p2)+f(p)=3+3+1=7f\left(p^3\right)=f\left(p^2\right)f\left(p\right)+f\left(p^2\right)+f\left(p\right)=3+3+1=7

This way, we can find the function output for any prime number raised to a power. 

We can see that each new exponent is twice the previous output +1, solving this way till prime raised to power 8

f(p4)=7+7+1=15f\left(p^4\right)=7+7+1=15

f(p5)=15+15+1=31f\left(p^5\right)=15+15+1=31

f(p6)=31+31+1=63f\left(p^6\right)=31+31+1=63

f(p7)=63+63+1=127f\left(p^7\right)=63+63+1=127

f(p8)=127+127+1=255f\left(p^8\right)=127+127+1=255

Using these values in the original expression of f(28× 54)=f(28)f(54)+f(28)+f(54)f\left(2^8\times\ 5^4\right)=f\left(2^8\right)f\left(5^4\right)+f\left(2^8\right)+f\left(5^4\right) we get

f(28× 54)=(255× 15)+255+15=4095f\left(2^8\times\ 5^4\right)=\left(255\times\ 15\right)+255+15=4095

Therefore, Option A is the correct answer. 

Video Explanation
CAT 2025 Score Booster Course - Enroll Now for Best CAT Preparation
CAT LRDI 100 Recorded Course - Master Logical Reasoning and Data Interpretation
HOME
CAT Sankalp Sale
Quant Revision Book
More
YoutubeWhatsapp