Question 6.

The roots α,β\alpha, \beta of the equation 3x2+λx1=03x^2 + \lambda x - 1 = 0, satisfy 1α2+1β2=15\cfrac{1}{\alpha^2} + \cfrac{1}{\beta^2} = 15.The value of (α3+β3)2(\alpha^3 + \beta^3)^2, is

A
9
B
16
C
4
D
1

Question Explanation

Text Explanation

From the sum and product of roots, we get: α +β =λ3\alpha\ +\beta\ =-\dfrac{\lambda}{3} and α β =13\alpha\ \beta\ =-\dfrac{1}{3}

Simplifying the expression given in the question, we get: α2+β2 α2β2 =15\dfrac{\alpha^2+\beta^2\ }{\alpha^2\beta^2\ }=15

and substituting the denominator's value as 1/9, we get:α2+β2 =159\alpha^2+\beta^2\ =\dfrac{15}{9}

We want the expression α3+β3 \alpha^3+\beta^3\ , so multiplying both sides by α+β\alpha+\beta, we get:

α3+β3+αβ(a+β )=159(α +β )\alpha^3+\beta^3+\alpha\beta\left(a+\beta\ \right)=\dfrac{15}{9}\left(\alpha\ +\beta\ \right)

α3+β3+λ9 =159(λ3 )\alpha^3+\beta^3+\dfrac{\lambda}{9}\ =\dfrac{15}{9}\left(-\dfrac{\lambda}{3}\ \right)

α3+β3+λ9 =5λ9λ9=2λ 3  \alpha^3+\beta^3+\dfrac{\lambda}{9}\ =-\dfrac{5\lambda}{9}-\dfrac{\lambda}{9}=-\dfrac{2\lambda\ }{3}\ \

We would still need to find the value of λ\lambda

This we can do from the initial relation we had:

α2+β2 =159\alpha^2+\beta^2\ =\dfrac{15}{9}

α2+β2 =(α+β)22α β   =159\alpha^2+\beta^2\ =\left(\alpha+\beta\right)^2-2\alpha\ \beta\ \ \ =\dfrac{15}{9}

λ29+23   =159\dfrac{\lambda^2}{9}+\frac{2}{3}\ \ \ =\dfrac{15}{9}

λ29 =1569=99=1\dfrac{\lambda^2}{9}\ =\dfrac{15-6}{9}=\dfrac{9}{9}=1

This would finally give us λ2=9\lambda^2=9

Using this in our required expression, we get:

(α3+β3)2=(2λ3  )2=4× 99=4\left(\alpha^3+\beta^3\right)^2=\left(-\dfrac{2\lambda}{3}\ \ \right)^2=\dfrac{4\times\ 9}{9}=4

Therefore, Option C is the correct answer. 

Video Explanation
CAT 2025 Score Booster Course - Enroll Now for Best CAT Preparation
CAT LRDI 100 Recorded Course - Master Logical Reasoning and Data Interpretation
HOME
CAT Sankalp Sale
Quant Revision Book
More
YoutubeWhatsapp