Question 21.

If p2+q229=2pq20=522pqp^2+q^2-29=2 p q-20=52-2 p q, then the difference between the maximum and minimum possible value of (p3q3)\left(p^3-q^3\right) is

A
486
B
189
C
378
D
243

Question Explanation

Text Explanation

Given that 2pq20=522pq4pq=72pq=18 2pq - 20 = 52 - 2pq \Rightarrow 4pq = 72 \Rightarrow pq = 18 ---(1)

Now, p2+q229=2pq20p2+q22pq=9(pq)2=9pq=±3 p^2 + q^2 - 29 = 2pq - 20 \Rightarrow p^2 + q^2 - 2pq = 9 \Rightarrow (p-q)^2 = 9 \Rightarrow p - q = \pm 3

Also, p2+q229=2pq20p2+q2=2pq+9=2(18)+9=45 p^2 + q^2 - 29 = 2pq - 20 \Rightarrow p^2 + q^2 = 2pq + 9 = 2(18) + 9 = 45

Now, p3q3=(pq)(p2+pq+q2)=(pq)(45+18)=(pq)(63) p^3 - q^3 = (p-q)(p^2 + pq + q^2) = (p-q)(45 + 18) = (p-q)(63)

=> When pq=3 p-q = -3 => The value is 63(3)=189 63(-3) = -189 and when pq=3 p-q = 3 => The value is 63(3)=189 63(3) = 189 .

=> The difference = 189(189)=378 189 - (-189) = 378 .

Video Explanation
XAT 2026 Full Course - Enroll Now for Best XAT Preparation
CAT LRDI 100 Recorded Course - Master Logical Reasoning and Data Interpretation
HOME
XAT Sankalp Sale
Quant Revision Book
More
YoutubeWhatsapp