Given that 2pq−20=52−2pq⇒4pq=72⇒pq=18 ---(1)
Now, p2+q2−29=2pq−20⇒p2+q2−2pq=9⇒(p−q)2=9⇒p−q=±3
Also, p2+q2−29=2pq−20⇒p2+q2=2pq+9=2(18)+9=45
Now, p3−q3=(p−q)(p2+pq+q2)=(p−q)(45+18)=(p−q)(63)
=> When p−q=−3 => The value is 63(−3)=−189 and when p−q=3 => The value is 63(3)=189.
=> The difference = 189−(−189)=378.