Question 2.

If a1,a2,......a_1, a_2, ...... are in A.P., then, 1a1+a2+1a2+a3+.......+1an+an+1\frac{1}{\sqrt{a_1} + \sqrt{a_2}} + \frac{1}{\sqrt{a_2} + \sqrt{a_3}} + ....... + \frac{1}{\sqrt{a_n} + \sqrt{a_{n + 1}}} is equal to

A
na1+an+1\frac{n}{\sqrt{a_1} + \sqrt{a_{n + 1}}}
B
n1a1+an1\frac{n - 1}{\sqrt{a_1} + \sqrt{a_{n - 1}}}
C
n1a1+an\frac{n - 1}{\sqrt{a_1} + \sqrt{a_n}}
D
na1an+1\frac{n}{\sqrt{a_1} - \sqrt{a_{n + 1}}}

Question Explanation

Text Explanation

We have, 1a1+a2+1a2+a3+.......+1an+an+1\frac{1}{\sqrt{a_1} + \sqrt{a_2}} + \frac{1}{\sqrt{a_2} + \sqrt{a_3}} + ....... + \frac{1}{\sqrt{a_n} + \sqrt{a_{n + 1}}}

Now, 1a1+a2\frac{1}{\sqrt{a_1} + \sqrt{a_2}} = a2a1(a2+a1)(a2a1)\frac{\sqrt{a_2} - \sqrt{a_1}}{(\sqrt{a_2} + \sqrt{a_1})(\sqrt{a_2} - \sqrt{a_1})}  (Multiplying numerator and denominator by a2a1\sqrt{a_2} - \sqrt{a_1})

= a2a1(a2a1\frac{\sqrt{a_2} - \sqrt{a_1}}{({a_2} - {a_1}}

=a2a1d\frac{\sqrt{a_2} - \sqrt{a_1}}{d}  (where d is the common difference)

Similarly, 1a2+a3\frac{1}{\sqrt{a_2} + \sqrt{a_3}}a3a2d\frac{\sqrt{a_3} - \sqrt{a_2}}{d} and so on.

Then the expression 1a1+a2+1a2+a3+.......+1an+an+1\frac{1}{\sqrt{a_1} + \sqrt{a_2}} + \frac{1}{\sqrt{a_2} + \sqrt{a_3}} + ....... + \frac{1}{\sqrt{a_n} + \sqrt{a_{n + 1}}}

can be written as   1d(a2a1+a3a3+..........................an+1an\ \frac{\ 1}{d}(\sqrt{a_2}-\sqrt{a_1}+\sqrt{a_3}-\sqrt{a_3}+..........................\sqrt{a_{n+1}} - \sqrt{a_{n}}

  nnd(an+1a1)\ \frac{\ n}{nd}(\sqrt{a_{n+1}}-\sqrt{a_1}) (Multiplying both numerator and denominator by n)

=  n(an+1a1)an+1a1\ \frac{n(\sqrt{a_{n+1}}-\sqrt{a_1})}{{a_{n+1}} - {a_1}}   (an+1a1=nd)(a_{n+1} - {a_1} =nd)

na1+an+1\frac{n}{\sqrt{a_1} + \sqrt{a_{n + 1}}}

Video Explanation
No video explanation yet — we're on it and uploading soon!
XAT 2026 Full Course - Enroll Now for Best XAT Preparation
CAT LRDI 100 Recorded Course - Master Logical Reasoning and Data Interpretation
HOME
XAT Sankalp Sale
Quant Revision Book
More
YoutubeWhatsapp