Question 14.

Suppose x1,x2,x3,...,x100x_{1},x_{2},x_{3},...,x_{100} are in arithmetic progression such that x5=4x_{5}=-4 and 2x6+2x9=x11+x132x_{6}+2x_{9}=x_{11}+x_{13}, Then,x100x_{100} equals

A
-194
B
-196
C
204
D
206

Question Explanation

Text Explanation

Using the arithmetic progression formula for the nth term, where

xn=a+(n1)dx_n=a+\left(n-1\right)d

Substituting the value for n and using that in the equation that is given, 

2x6+2x9=x11+x132x_{6}+2x_{9}=x_{11}+x_{13}, Then,x100x_{100} equals

We get, 2(a+5d)+2(a+8d)=a+10d+a+12d2\left(a+5d\right)+2\left(a+8d\right)=a+10d+a+12d

4a+26d=2a+22d4a+26d=2a+22d

2a=4d2a=-4d

a=2da=-2d

We are given, x5=4x_5=-4

a+4d=4a+4d=-4

Substituting the value for a in terms of d, 

2d=42d=-4

d=2d=-2

a=4a=4

x100=a+99dx_{100}=a+99d

x100=4198=194x_{100}=4-198=-194

Video Explanation
CAT 2025 Score Booster Course - Enroll Now for Best CAT Preparation
CAT LRDI 100 Recorded Course - Master Logical Reasoning and Data Interpretation
HOME
CAT Sankalp Sale
Quant Revision Book
More
YoutubeWhatsapp