Question 12.

For any real number x , let [x] be the largest integer less than or equal to x . If n=1N[15+n25]=25\sum_{n=1}^N\left[\frac{1}{5}+\frac{n}{25}\right]=25 then N is

A
B
C
D

Question Explanation

Text Explanation

It is given,

n=1N[15+n25]=25\sum_{n=1}^{N} \left[ \frac{1}{5} + \frac{n}{25} \right] = 25

n=1N[5+n25]=25\sum_{n=1}^{N} \left[ \frac{5 + n}{25} \right] = 25

For n = 1 to n = 19, value of function is zero.

For n = 20 to n = 44, value of function will be 1.

44=20+n144 = 20 + n - 1

n = 25 which is equal to given value.

This implies N = 44

Video Explanation
XAT 2026 Full Course - Enroll Now for Best XAT Preparation
CAT LRDI 100 Recorded Course - Master Logical Reasoning and Data Interpretation
HOME
XAT Sankalp Sale
Quant Revision Book
More
YoutubeWhatsapp