Question 10.

For real x, the maximum possible value of x(1+x4)\frac{x}{\sqrt(1 + x^{4})} is

A
1
B
12\frac{1}{2}
C
12\frac{1}{√2}
D
13\frac{1}{√3}

Question Explanation

Text Explanation

Now x1+x4=11+x4x2=11x2+x2\frac{x}{\sqrt{1+x^4}} = \frac{1}{\sqrt{\frac{1+x^4}{x^2}}} = \frac{1}{\sqrt{\frac{1}{x^2}+x^2}}

Applying A.M >= G.M.

(1x2+x2)21\frac{\left(\frac{1}{x^2} + x^2\right)}{2} \ge 1 or 1x2+x22\frac{1}{x^2} + x^2 \ge 2

Substituting we get the maximum possible value of the equation as 12\frac{1}{\sqrt{2}}

Video Explanation
No video explanation yet — we're on it and uploading soon!
XAT 2026 Full Course - Enroll Now for Best XAT Preparation
CAT LRDI 100 Recorded Course - Master Logical Reasoning and Data Interpretation
HOME
XAT Sankalp Sale
Quant Revision Book
More
YoutubeWhatsapp