Question 9.

If x = (4096)^{7+4√3}, then which of the following equals 64?

A
x7/2x4/3\frac{x^{7/2}}{x^{4/√3}}
B
x7x43\frac{x^{7}}{x^{4√3}}
C
x7/2x23\frac{x^{7/2}}{x^{2√3}}
D
x7x23\frac{x^{7}}{x^{2√3}}

Question Explanation

Text Explanation

x=212(7+43)x = 2^{12(7 + 4\sqrt3)}

x7/2=242(7+43)x^{7/2} = 2^{42(7 + 4\sqrt3)}

x23=2243(7+43)x^{2\sqrt3} = 2^{24\sqrt3(7 + 4\sqrt3)}

x7/2x23=2(7+43)(42243)=2(7+43)(743)6=26\frac{x^{7/2}}{x^{2\sqrt3}} = 2^{(7 + 4\sqrt3)(42 - 24\sqrt3)} = 2^{(7 + 4\sqrt3)(7 - 4\sqrt3)6} = 2^6

Hence correct option is C.

Video Explanation
XAT 2026 Full Course - Enroll Now for Best XAT Preparation
CAT LRDI 100 Recorded Course - Master Logical Reasoning and Data Interpretation
HOME
XAT Sankalp Sale
Quant Revision Book
More
YoutubeWhatsapp