Question 6.

Let α and β be the two distinct roots of the equation 2x26x+k=02 x^2-6 x+k=0, such that (α+β) and αβ are the distinct roots of the equation x2+px+p=0x^2+p x+p=0. Then, the value of 8(k−p) is

A
B
C
D

Question Explanation

Text Explanation

Given a and b are the distinct roots of the equation 2x26x+k=02x^{2} - 6x + k = 0

⇒ a + b = -(-6/2) = 3 (Sum of the roots)

⇒ ab = k/2 (Product of the roots)

Now, (a+b) and ab are the roots of the quadratic equation x2+px+p=0x^{2} + px + p = 0

⇒ a + b + ab = -p ⇒ 3 + k/2 = -p ---(1)

⇒ (a + b)(ab) = p ⇒ 3(k/2) = p ---(2)

3+k2=3k23+\dfrac{k}{2}=-\dfrac{3k}{2} ⇒ 2k = -3 ⇒ k = 32-\dfrac{3}{2}

p = 3k2=32(32)=94\dfrac{3k}{2}=\dfrac{3}{2}\left(-\dfrac{3}{2}\right)=-\dfrac{9}{4}

⇒ 8(k-p) = 8(32+94)=12+18=68\left(-\frac{3}{2}+\frac{9}{4}\right)=-12+18=6

Video Explanation
XAT 2026 Full Course - Enroll Now for Best XAT Preparation
CAT LRDI 100 Recorded Course - Master Logical Reasoning and Data Interpretation
HOME
XAT Sankalp Sale
Quant Revision Book
More
YoutubeWhatsapp