Question 6.

A circular plot of land is divided into two regions by a chord of length 10310\sqrt{3} meters such that the chord subtends an angle of 120° at the center. Then, the area, in square meters, of the smaller region is

A
20(4π3+3)20\left(\cfrac{4 \pi}{3} + \sqrt{3}\right)
B
25(4π3+3)25\left(\cfrac{4 \pi}{3} + \sqrt{3}\right)
C
20(4π33)20\left(\cfrac{4 \pi}{3} - \sqrt{3}\right)
D
25(4π33)25\left(\cfrac{4 \pi}{3} - \sqrt{3}\right)

Question Explanation

Text Explanation

This is the situation that is described in the question above, Angle AOB is 120 degrees and the chord AB is of length 10cm. 


Using Cosine rule we can find the length of AO and AB

cos(AOB)=(r2+r2300)2r2\cos\left(AOB\right)=\frac{\left(r^2+r^2-300\right)}{2r^2}

12=(2r2300)2r2-\frac{1}{2}=\frac{\left(2r^2-300\right)}{2r^2}

3r2=3003r^2=300

r=10r=10

Area of the Sector AOB is 120360× π × r2\frac{120}{360}\times\ \pi\ \times\ r^2

13× π × 1001\frac{1}{3}\times\ \pi\ \times\ \frac{100}{1} which is 100π3 \frac{100\pi}{3}\

Area of triangle AOB is 12× r2× sin(120)\frac{1}{2}\times\ r^2\times\ \sin\left(120\right)

12× 1001× 32\frac{1}{2}\times\ \frac{100}{1}\times\ \frac{\sqrt{3}}{2}

Area of triangle AOB is 753\frac{75}{\sqrt{3}}

The smaller region will be, 100π 3753\frac{100\pi\ }{3}-\frac{75}{\sqrt{3}}

Taking 25 common we will get, 

25(4π33)25\left(\cfrac{4 \pi}{3} - \sqrt{3}\right)

Video Explanation
CAT 2025 Score Booster Course - Enroll Now for Best CAT Preparation
CAT LRDI 100 Recorded Course - Master Logical Reasoning and Data Interpretation
HOME
CAT Sankalp Sale
Quant Revision Book
More
YoutubeWhatsapp