Question 4.

Let n be the least positive integer such that 168 is a factor of 1134n1134^n. If m is the least positive integer such that 1134n1134^n is a factor of 168m168^m, then m+n equals

A
12
B
9
C
15
D
24

Question Explanation

Text Explanation

Prime factorising 1134, we get  1134=2×34×71134 = 2 \times 3^4 \times 7  and  168=23×3×7168 = 2^3 \times 3 \times 7

1134n1134^n is a factor of 168  \Rightarrow the factor of 2 should be at least 3, for 168 to be a factor  n=3\Rightarrow n = 3

Now,  1134n=11343=23×312×731134^n = 1134^3 = 2^3 \times 3^{12} \times 7^3  is a factor of  168m=(23×3×7)m168^m = \left(2^3 \times 3 \times 7\right)^m  m=12\Rightarrow m = 12 as power of 3 should be at least 12.

\Rightarrow So, m+n=15m + n = 15

Video Explanation
XAT 2026 Full Course - Enroll Now for Best XAT Preparation
CAT LRDI 100 Recorded Course - Master Logical Reasoning and Data Interpretation
HOME
XAT Sankalp Sale
Quant Revision Book
More
YoutubeWhatsapp