Question 3.

The sum of all real values of k for which (18)k×(132768)13=18×(132768)1k\left(\cfrac{1}{8}\right)^{k}\times \left(\cfrac{1}{32768}\right)^{\cfrac{1}{3}}=\cfrac{1}{8}\times \left(\cfrac{1}{32768}\right)^{\cfrac{1}{k}}, is

A
23\cfrac{2}{3}
B
43\cfrac{4}{3}
C
23-\cfrac{2}{3}
D
43-\cfrac{4}{3}

Question Explanation

Text Explanation

To solve this question, we need to immediately recognise the fact that, 32768=8532768=8^5

Substituting this in the above given equation, 

(18)k× (18)5× 13\left(\dfrac{1}{8}\right)^k\times\ \left(\dfrac{1}{8}\right)^{5\times\ \dfrac{1}{3}} = (18)× (18)5× 1k\left(\dfrac{1}{8}\right)\times\ \left(\dfrac{1}{8}\right)^{5\times\ \dfrac{1}{k}}

Since the bases are equal, we can equate the powers on either side of the equation, 

k+53=1+5kk+\frac{5}{3}=1+\frac{5}{k}

(3k+5)3=(k+5)k\frac{\left(3k+5\right)}{3}=\frac{\left(k+5\right)}{k}

3k2+5k=3k+153k^2+5k=3k+15

3k2+2k15=03k^2+2k-15=0

Here in the given quadratic equation, the Discriminant is greater than 0,

 22(4)(3)(15)2^2-\left(4\right)\left(3\right)\left(-15\right)> 0

That means both the roots are real, hence we can simply take the sum of the roots of the quadratic equation in k, 

Which in a standard quadratic equation of the form ax2+bx+cax^2+bx+c is ba-\frac{b}{a}

Here, the sum of the real values of k is 23-\frac{2}{3}

Video Explanation
CAT 2025 Score Booster Course - Enroll Now for Best CAT Preparation
CAT LRDI 100 Recorded Course - Master Logical Reasoning and Data Interpretation
HOME
CAT Sankalp Sale
Quant Revision Book
More
YoutubeWhatsapp