Question 20.

The value of 1+(1+13)14+(1+13+19)116+(1+13+19+127)164+1+\left(1+\frac{1}{3}\right) \frac{1}{4}+\left(1+\frac{1}{3}+\frac{1}{9}\right) \frac{1}{16}+\left(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}\right) \frac{1}{64}+\cdots is

A
1513\frac{15}{13}
B
1611\frac{16}{11}
C
2712\frac{27}{12}
D
158\frac{15}{8}

Question Explanation

Text Explanation

The given sequence can be written as:

1(1+14+116+164+...)+13(14+116+...)+19(116+164+...)+... 1\left(1 + \frac{1}{4} + \frac{1}{16} + \frac{1}{64} + ...\right) + \frac{1}{3}\left(\frac{1}{4} + \frac{1}{16} + ...\right) + \frac{1}{9}\left(\frac{1}{16} + \frac{1}{64} + ...\right) + ...

We know that the sum of an infinite G.P. is a1r \frac{a}{1-r} , where a is the first term and r is the common ratio.

=> The first term = 1114=43 \frac{1}{1-\frac{1}{4}} = \frac{4}{3}

=> The second term = 13((14)1(14))=19 \frac{1}{3}\left(\frac{\left(\frac{1}{4}\right)}{1-\left(\frac{1}{4}\right)}\right) = \frac{1}{9}

=> The third term = 19((116)1(14))=1108 \frac{1}{9}\left(\frac{\left(\frac{1}{16}\right)}{1-\left(\frac{1}{4}\right)}\right) = \frac{1}{108}

Observing these three terms, we see that they are in G.P. with a common ratio of 112 \frac{1}{12}

=> Sum of this infinite G.P. = (43)1(112)=1611 \frac{\left(\frac{4}{3}\right)}{1-\left(\frac{1}{12}\right)} = \frac{16}{11}

Video Explanation
XAT 2026 Full Course - Enroll Now for Best XAT Preparation
CAT LRDI 100 Recorded Course - Master Logical Reasoning and Data Interpretation
HOME
XAT Sankalp Sale
Quant Revision Book
More
YoutubeWhatsapp