Question 20.

If n is a positive integer such that (107)(107)2(107)n>999(\sqrt[7]{10})(\sqrt[7]{10})^2 \ldots (\sqrt[7]{10})^n \gt 999, then the smallest value of n is

A
B
C
D

Question Explanation

Text Explanation

(107)(107)2(107)n>999(\sqrt[7]{10})(\sqrt[7]{10})^2 \ldots (\sqrt[7]{10})^n \gt 999

(107)1+2++n>999(\sqrt[7]{10})^{1+2+\ldots+n} \gt 999

101+2++n7>99910^{\frac{1+2+\ldots+n}{7}} \gt 999

For minimum value of nn,

1+2++n7=3\frac{1+2+\ldots+n}{7} = 3

1+2++n=211 + 2 + \ldots + n = 21

We can see that if n=6n = 6, 1+2+3++6=211 + 2 + 3 + \ldots + 6 = 21.

Video Explanation
XAT 2026 Full Course - Enroll Now for Best XAT Preparation
CAT LRDI 100 Recorded Course - Master Logical Reasoning and Data Interpretation
HOME
XAT Sankalp Sale
Quant Revision Book
More
YoutubeWhatsapp