Question 19.

The vertices of a triangle are (0,0), (4,0) and (3,9). The area of the circle passing through these three points is

A
14π3\frac{14π}{3}
B
123π7\frac{123π}{7}
C
205π9\frac{205π}{9}
D
12π5\frac{12π}{5}

Question Explanation

Text Explanation

Equation of circle x2+y2+2gx+2fy+c=0x^2 + y^2 + 2gx + 2fy + c = 0

It passes through (0,0),(4,0),(3,9). (0,0),(4,0),(3,9).

Substitute (0,0): c=0 \Rightarrow \text{Substitute } (0,0):\ c = 0

Substitute (4,0): 16+0+8g+0=0 ; g=2 \Rightarrow \text{Substitute } (4,0):\ 16 + 0 + 8g + 0 = 0 \ ;\ g = -2

Substitute (3,9): 9+8112+18f=0 ; f=13/3 \Rightarrow \text{Substitute } (3,9):\ 9 + 81 - 12 + 18f = 0 \ ;\ f = -13/3

Radius of circle r=g2+f2c \text{Radius of circle } r = \sqrt{g^2 + f^2 - c}

r2=2059 \Rightarrow r^2 = \frac{205}{9}

Therefore, Area = πr2=205π9\pi r^2 = \frac{205\pi}{9}

Video Explanation
No video explanation yet — we're on it and uploading soon!
XAT 2026 Full Course - Enroll Now for Best XAT Preparation
CAT LRDI 100 Recorded Course - Master Logical Reasoning and Data Interpretation
HOME
XAT Sankalp Sale
Quant Revision Book
More
YoutubeWhatsapp