Question 19.

Consider the arithmetic progression 3,7,11,… and let An denote the sum of the first n terms of this progression. Then the value of 125n=125An\frac{1}{25} \sum_{n=1}^{25} A_n is

A
404
B
442
C
455
D
415

Question Explanation

Text Explanation

Sum of n terms in an A.P = n2(2a+(n1)d)\frac{n}{2}(2a + (n - 1)d)

An=n2(6+(n1)4)=n(2n+1)A_n = \frac{n}{2}(6 + (n - 1)4) = n(2n + 1)

An=n(2n+1)=2n2+n=2n(n+1)(2n+1)6+n(n+1)2\sum A_n = \sum n(2n + 1) = 2\sum n^2 + \sum n = \frac{2n(n+1)(2n+1)}{6} + \frac{n(n+1)}{2}

Substituting n=25n = 25, we get

125n=125An=125(2(25)(25+1)(50+1)6+25(25+1)2)\frac{1}{25}\sum_{n=1}^{25} A_n = \frac{1}{25}\left(\frac{2(25)(25+1)(50+1)}{6} + \frac{25(25+1)}{2}\right)

125n=125An=26(17)+13=455\frac{1}{25}\sum_{n=1}^{25} A_n = 26(17) + 13 = 455

Video Explanation
XAT 2026 Full Course - Enroll Now for Best XAT Preparation
CAT LRDI 100 Recorded Course - Master Logical Reasoning and Data Interpretation
HOME
XAT Sankalp Sale
Quant Revision Book
More
YoutubeWhatsapp