Question 15.

Let a and b be natural numbers. If a2+ab+a=14a^2+a b+a=14 and b2+ab+b=28b^2+a b+b=28, then (2a + b) equals

A
7
B
10
C
9
D
8

Question Explanation

Text Explanation

a(a + b + 1) = 14 …… (1)

b(a + b + 1) = 28 …… (2)

ab=12\frac{a}{b} = \frac{1}{2}

b = 2a

Substituting in (1), we get

a(3a + 1) = 14

3a2+a14=03a^2 + a - 14 = 0

3a26a+7a14=03a^2 - 6a + 7a - 14 = 0

3a(a2)+7(a2)=03a(a - 2) + 7(a - 2) = 0

Given, a and b are natural numbers.

Therefore, a = 2 and b = 4

2a + b = 2(2)+4=82(2) + 4 = 8

Video Explanation
XAT 2026 Full Course - Enroll Now for Best XAT Preparation
CAT LRDI 100 Recorded Course - Master Logical Reasoning and Data Interpretation
HOME
XAT Sankalp Sale
Quant Revision Book
More
YoutubeWhatsapp