Question 14.

A fruit seller has a stock of mangoes, bananas and apples with at least one fruit of each type. At the beginning of a day, the number of mangoes make up 40% of his stock. That day, he sells half of the mangoes, 96 bananas and 40% of the apples. At the end of the day, he ends up selling 50% of the fruits. The smallest possible total number of fruits in the stock at the beginning of the day is

A
B
C
D

Question Explanation

Text Explanation

Let us assume the initial stock of all the fruits is S.

Let us take we have 'b' and 'a' mangoes initially.

Stock of Mangoes = 40% of S = 2S/5

The total number of fruits sold are Mangoes Sold + Apples Sold + Bananas Sold

= 2S/10 + 96 + 4a/10 = S/2 (Given)

=> S/5 + 96 + 2a/5 = S/2

=> S = (4a+960)3\frac{(4a+960)}{3}

=> 4a3+320\frac{4a}{3} + 320

'a' has to be a multiple of 3 for the above term to be an integer.

But 'a' has to be a multiple of 5 for 4a/10 to be an integer.

=> The smallest value of 'a' satisfying both conditions is 15.

=> 4a3\frac{4a}{3} + 320 = 4(15)3\frac{4(15)}{3} + 320 = 340

Video Explanation
XAT 2026 Full Course - Enroll Now for Best XAT Preparation
CAT LRDI 100 Recorded Course - Master Logical Reasoning and Data Interpretation
HOME
XAT Sankalp Sale
Quant Revision Book
More
YoutubeWhatsapp