Question 1.

In triangle ABC, altitudes AD and BE are drawn to the corresponding bases. If BAC=45\angle B A C=45^{\circ} and ∠ABC=θ , then ADBE\frac{A D}{B E} equals

A
2sinθ\sqrt{2} \sin \theta
B
2cosθ\sqrt{2} \cos \theta
C
(sinθ+cosθ)2\frac{(\sin \theta+\cos \theta)}{\sqrt{2}}
D
1
Rate this Solution
Next Question

Question Explanation

Text Explanation


It is given, Angle BAE = 45 degrees

This implies AE = BE

Let AE = BE = x

In right-angled triangle ABD, it is given ABC=θ\angle ABC = \theta

sinθ=ADAB\sin \theta = \frac{AD}{AB}

sinθ=ADx2\sin \theta = \frac{AD}{x\sqrt{2}}

2sinθ=ADBE\sqrt{2}\sin \theta = \frac{AD}{BE}

Video Explanation
XAT 2026 Full Course - Enroll Now for Best XAT Preparation
CAT LRDI 100 Recorded Course - Master Logical Reasoning and Data Interpretation
HOME
XAT Sankalp Sale
Quant Revision Book
More
YoutubeWhatsapp