Question 1.

For a real number x , if 12,log3(2x9)log34\frac{1}{2}, \frac{\log _3\left(2^x-9\right)}{\log _3 4}, and log5(2x+172)log54\frac{\log _5\left(2^x+\frac{17}{2}\right)}{\log _5 4} are in an arithmetic progression, then the common difference is

A
log47\log _4 7
B
log4(32)\log _4\left(\frac{3}{2}\right)
C
log4(72)\log _4\left(\frac{7}{2}\right)
D
log4(232)\log _4\left(\frac{23}{2}\right)
Rate this Solution
Next Question

Question Explanation

Text Explanation

It is given that 12 \frac{1}{2} , log3(2x9)log34 \frac{\log_3(2^x - 9)}{\log_3 4} , and log5(2x+172)log54 \frac{\log_5(2^x + \frac{17}{2})}{\log_5 4} are in an arithmetic progression.

log3(2x9)log34 \frac{\log_3(2^x - 9)}{\log_3 4} can be written as log4(2x9) \log_4(2^x - 9) , and log5(2x+172)log54 \frac{\log_5(2^x + \frac{17}{2})}{\log_5 4} can be written as log4(2x+172) \log_4(2^x + \frac{17}{2})

Hence, 2log4(2x9)=12+log4(2x+172) 2 \log_4(2^x - 9) = \frac{1}{2} + \log_4(2^x + \frac{17}{2})

12 \frac{1}{2} can be written as log42 \log_4 2 .

Therefore,

=> 2log4(2x9)=log42+log4(2x+172) 2 \log_4(2^x - 9) = \log_4 2 + \log_4(2^x + \frac{17}{2})

=> log4(2x9)2=log42(2x+172) \log_4(2^x - 9)^2 = \log_4 2(2^x + \frac{17}{2})

=> (2x9)2=2(2x+172) (2^x - 9)^2 = 2(2^x + \frac{17}{2})

=> 22x182x+81=22x+17 2^{2x} - 18 \cdot 2^x + 81 = 2 \cdot 2^x + 17

=> 22x202x+64=0 2^{2x} - 20 \cdot 2^x + 64 = 0

=> 22x162x42x+64=0 2^{2x} - 16 \cdot 2^x - 4 \cdot 2^x + 64 = 0

=> 2x(2x16)4(2x16)=0 2^x(2^x - 16) - 4(2^x - 16) = 0

=> (2x4)(2x16)=0 (2^x - 4)(2^x - 16) = 0

The values of 2x 2^x can't be 4 (log will be undefined), which implies The value of 2x 2^x is 16.

Therefore, the common difference is log4(2x9)log42 \log_4(2^x - 9) - \log_4 2

=> log47log42=log4(72) \log_4 7 - \log_4 2 = \log_4\left(\frac{7}{2}\right)

Video Explanation
XAT 2026 Full Course - Enroll Now for Best XAT Preparation
CAT LRDI 100 Recorded Course - Master Logical Reasoning and Data Interpretation
HOME
XAT Sankalp Sale
Quant Revision Book
More
YoutubeWhatsapp