XAT Sankalp Days
GET UPTO 90% OFF
JOIN
Coachify CAT Club
IIMs Admission Criteria
LRDI Tracker
QUANT Revision Book
VARC Cheat Sheet
Join Coachify CAT Club
Courses
▼
Courses
SOP Generator
Past Papers
Blogs
About Us
My Dashboard
New
Login
Sign up
Home
ipmat-indore
Previous Papers
ipmat-indore
2025 Questions MCQ
ipmat-indore
2025 Complete Paper Solution | MCQ
PDF
Question 1.
Share
Report
Given that $1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + ... = \frac{\pi^2}{6}$, the value of $1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + ...$ is
A
$\frac{\pi^2}{6} - 1$
B
$\frac{\pi}{6}$
C
$\frac{\pi^2}{12}$
D
$\frac{\pi^2}{8}$
Backspace
7
8
9
4
5
6
1
2
3
0
.
-
Clear All
Submit
Text Explanation
Video Explanation
Question 2.
Share
Report
If $y=a+b \log _{e} x$ then which of the following is true?
A
$\frac{1}{y-a}$ is proportional to $x^{b}$
B
$y-a$ is proportional to $x^{b}$
C
$e^{y}$ is proportional to $x^{b}$
D
$\log _{e} y$ is proportional to $x$
Backspace
7
8
9
4
5
6
1
2
3
0
.
-
Clear All
Submit
Text Explanation
Video Explanation
Question 3.
Share
Report
If $a_1, a_2, ..., a_8$ are the roots of the equation $x^8 + x^7 + ... + x + 1 = 0$, then the value of $a_1^{2025} + a_2^{2025} + ... + a_8^{2025}$ is
A
0
B
2
C
8
D
4
Backspace
7
8
9
4
5
6
1
2
3
0
.
-
Clear All
Submit
Text Explanation
Video Explanation
Question 4.
Share
Report
Suppose $a, b$ and $c$ are three real numbers such that Max$(a, b, c) \ +$ Min$(a, b, c) = 15$, and Median$(a, b, c) \ -$ Mean$(a, b, c) = 2.$ Then the median of $a, b$ and $c$ is
A
11
B
10.5
C
10
D
9.5
Backspace
7
8
9
4
5
6
1
2
3
0
.
-
Clear All
Submit
Text Explanation
Video Explanation
Question 5.
Share
Report
If $\log_{25} [5 \log_3 (1+\log_3(1+2\log_2x))] = \frac12$ then $x$ is:
A
4
B
16
C
2
D
8
Backspace
7
8
9
4
5
6
1
2
3
0
.
-
Clear All
Submit
Text Explanation
Video Explanation
Question 6.
Share
Report
A natural number $n$ lies between $100$ and $400$, and the sum of its digits is $10$. The probability that $n$ is divisible by $4$, is
A
$\frac{1}{4}$
B
$\frac{7}{27}$
C
$\frac{1}{3}$
D
$\frac{2}{9}$
Backspace
7
8
9
4
5
6
1
2
3
0
.
-
Clear All
Submit
Text Explanation
Video Explanation
Question 7.
Share
Report
In triangle $ABC, AB = AC = x, ∠ABC = \theta$ and the circumradius is equal to $y$. Then $\frac{x}{y}$ equals
A
$\sin \theta$
B
$\cos \theta$
C
$2 \cos \theta$
D
$2 \sin \theta$
Backspace
7
8
9
4
5
6
1
2
3
0
.
-
Clear All
Submit
Text Explanation
Video Explanation
Question 8.
Share
Report
If $8x^2 - 2kx + k = 0$ is a quadratic equation in $x$, such that one of its roots is $p$ times the other, and $p, k$ are positive real numbers, then $k$ equals
A
$(p + \frac{1}{p})$
B
$2(p + \frac{1}{p})$
C
$2(\sqrt{p} + \frac{1}{\sqrt{p}})^2$
D
$(\sqrt{p} + \frac{1}{\sqrt{p}})^2$
Backspace
7
8
9
4
5
6
1
2
3
0
.
-
Clear All
Submit
Text Explanation
Video Explanation
Question 9.
Share
Report
Let $A(1,3)$ and $B(5,1)$ be two points. If a line with slope $m$ intersects $AB$ at an angle of $45°$, then the possible values of $m$ are
A
$7, \frac{1}{7}$
B
$3, \frac{1}{3}$
C
$-3, \frac{1}{3}$
D
$5, -\frac{1}{5}$
Backspace
7
8
9
4
5
6
1
2
3
0
.
-
Clear All
Submit
Text Explanation
Video Explanation
Question 10.
Share
Report
Let $P(x)$ be a quadratic polynomial such that
$\left|\begin{array}{ll} P(0) & P(1) \\ P(0) & P(2) \end{array}\right|=0$
Let $P(0)=2$ and $P(1)+P(2)+P(3)=14$. Then $P(4)$ equals
A
-14
B
30
C
-6
D
16
Backspace
7
8
9
4
5
6
1
2
3
0
.
-
Clear All
Submit
Text Explanation
Video Explanation
«
1
2
3
»
HOME
XAT Sankalp Sale
Quant Revision Book
More