Question 9.

If a rhombus has area 12 sq cm and side length 5 cm, then the length, in cm, of its longer diagonal is

A
37+132\frac{\sqrt{37} + \sqrt{13}}{2}
B
13+122\frac{\sqrt{13} + \sqrt{12}}{2}
C
√(37) + √(13)
D
√(13) + √(12)

Question Explanation

Text Explanation

All the sides of the rhombus are equal.

The area of a rhombus is 12 cm2cm^2

Considering d1 to be the length of the longer diagonal, d2 to be the length of the shorter diagonal.

The area of a rhombus is 12(d1)(d2)=12 \frac{1}{2} (d1)(d2) = 12 .

So d1d2=24d1 \cdot d2 = 24.

The length of the side of a rhombus is given by  

d12+d222 \frac{\sqrt{d1^2 + d2^2}}{2} .  

This is because the diagonals and a side form a right triangle with sides d1/2d1/2, d2/2d2/2, and the side length.

d12+d222=5\frac{\sqrt{d1^2 + d2^2}}{2} = 5

Hence d12+d22=10\sqrt{d1^2 + d2^2} = 10

So  

d12+d22=100d1^2 + d2^2 = 100

Using d1d2=24d1 \cdot d2 = 24, we have 2d1d2=482 \cdot d1 \cdot d2 = 48.

So two equations:

d12+d22+2d1d2=100+48=148d1^2 + d2^2 + 2 d1 d2 = 100 + 48 = 148

d12+d222d1d2=10048=52d1^2 + d2^2 - 2 d1 d2 = 100 - 48 = 52

So:

d1+d2=148d1 + d2 = \sqrt{148} (1)

d1d2=52d1 - d2 = \sqrt{52}  (2)

(1) + (2)= 2*(d1) = 2*(37+13\sqrt{37} + \sqrt{13})

d1 = 37+13\sqrt{37} + \sqrt{13}

or 

In a rhombus the area of a Rhombus is given by :


The diagonals perpendicularly bisect each other. Considering the length of the diagonal to be 2a,2b2a, 2b.

The area of a Rhombus is:

(12)(2a)(2b)=12 \left( \frac{1}{2} \right) (2a)(2b) = 12

So:

ab=6ab = 6

The length of each side is:

a2+b2=5\sqrt{a^2 + b^2} = 5, so

a2+b2=25a^2 + b^2 = 25

(a+b)2=37(a + b)^2 = 37, so

a+b=37a + b = \sqrt{37}

(ab)2=13(a - b)^2 = 13, so

ab=13a - b = \sqrt{13}

Now solving:

2a=(37+13)2a = (\sqrt{37} + \sqrt{13})

2b=(3713)2b = (\sqrt{37} - \sqrt{13})

2a is longer diagonal which is equal to  (3713\sqrt{37} - \sqrt{13})

Video Explanation
XAT 2026 Full Course - Enroll Now for Best XAT Preparation
CAT LRDI 100 Recorded Course - Master Logical Reasoning and Data Interpretation
HOME
XAT Sankalp Sale
Quant Revision Book
More
YoutubeWhatsapp