Question 8.

Let x,y,x, y, and zz be real numbers satisfying 4(x2+y2+z2)=a4(x^{2}+y^{2}+z^{2})=a, 4(xyz)=3+a4(x-y-z)=3+a The a equals

A
33
B
1131\dfrac{1}{3}
C
44
D
11

Question Explanation

Text Explanation

We have two equations,

4(x2+y2+z2)=a4(x^{2}+y^{2}+z^{2}) = a ---(1)

4(xyz)=3+a4(x - y - z) = 3 + a ---(2)

Substituting the value of a from equation 1 in equation 2, we get,

4(x  y  z) = 3 + 4(x2 + y2 + z2)4\left(x\ -\ y\ -\ z\right)\ =\ 3\ +\ 4(x^2\ +\ y^2\ +\ z^2)

 3 + 4(x2 + y2 + z2) 4(x  y  z) = 0\ 3\ +\ 4(x^2\ +\ y^2\ +\ z^2)\ -4\left(x\ -\ y\ -\ z\right)\ =\ 0

 3 + 4x2 + 4y2 + 4z2 4x  + 4y + 4z = 0\ 3\ +\ 4x^2\ +\ 4y^2\ +\ 4z^2\ -4x\ \ +\ 4y\ +\ 4z\ =\ 0

It can be written as,

4x2 4x + 1+ 4y2 + 4y + 1 + 4z2 + 4z + 1 = 04x^2\ -4x\ +\ 1+\ 4y^2\ +\ 4y\ +\ 1\ +\ 4z^2\ +\ 4z\ +\ 1\ =\ 0

(2x  1)2 + (2y + 1)2 + (2z + 1)2  =0\left(2x\ -\ 1\right)^2\ +\ \left(2y\ +\ 1\right)^2\ +\ \left(2z\ +\ 1\right)^2\ \ =0

We know that if the sum of the squares of terms is 0, then all the terms must be equal to 0

2x - 1 = 0

x = 12\dfrac{1}{2}

2y + 1 = 0

y = 12-\dfrac{1}{2}

2z + 1 = 0

z = 12-\dfrac{1}{2}

Substituting the values in equation 2, we get,

4(12  (12)  (12)) = 3 + a4\left(\dfrac{1}{2}\ -\ \left(-\dfrac{1}{2}\right)\ -\ \left(-\dfrac{1}{2}\right)\right)\ =\ 3\ +\ a

4(32) = 3 + a4\left(\dfrac{3}{2}\right)\ =\ 3\ +\ a

6 = 3 + a6\ =\ 3\ +\ a

 a = 3\ a\ =\ 3

Therefore, the correct answer is option A.

Video Explanation
CAT 2025 Score Booster Course - Enroll Now for Best CAT Preparation
CAT LRDI 100 Recorded Course - Master Logical Reasoning and Data Interpretation
HOME
CAT Sankalp Sale
Quant Revision Book
More
YoutubeWhatsapp