Question 22.

The sum of the infinite series 15(1517)+(15)2((15)2(17)2)+(15)3((15)3(17)3)+......\cfrac{1}{5}\left(\cfrac{1}{5} - \cfrac{1}{7}\right) + \left(\cfrac{1}{5}\right)^2 \left(\left(\cfrac{1}{5}\right)^2 - \left(\cfrac{1}{7}\right)^2\right) + \left(\cfrac{1}{5}\right)^3 \left(\left(\cfrac{1}{5}\right)^3 - \left(\cfrac{1}{7}\right)^3\right) + ...... is equal to

A
7816\cfrac{7}{816}
B
5408\cfrac{5}{408}
C
7408\cfrac{7}{408}
D
5816\cfrac{5}{816}
Previous Question
Rate this Solution

Question Explanation

Text Explanation

Opening the brackets, we get the series as: (15)2(15× 17)+(15)4(15× 17)2+(15)6(15× 17)3+...\left(\dfrac{1}{5}\right)^2-\left(\dfrac{1}{5}\times\ \dfrac{1}{7}\right)+\left(\dfrac{1}{5}\right)^4-\left(\dfrac{1}{5}\times\ \dfrac{1}{7}\right)^2+\left(\dfrac{1}{5}\right)^6-\left(\dfrac{1}{5}\times\ \dfrac{1}{7}\right)^3+...

These are two infinite GPs when rearranged:

(15)2+(15)4+(15)6+...(15× 17)(15× 17)2(15× 17)3...\left(\dfrac{1}{5}\right)^2+\left(\dfrac{1}{5}\right)^4+\left(\dfrac{1}{5}\right)^6+...-\left(\dfrac{1}{5}\times\ \dfrac{1}{7}\right)-\left(\dfrac{1}{5}\times\ \dfrac{1}{7}\right)^2-\left(\dfrac{1}{5}\times\ \dfrac{1}{7}\right)^3-...

The sum of the first series would be 1251125=124\dfrac{\dfrac{1}{25}}{1-\dfrac{1}{25}}=\dfrac{1}{24}

The sum of the second series would be 1351135=134\frac{\dfrac{1}{35}}{1-\dfrac{1}{35}}=\dfrac{1}{34}

The answer to the given series would then be 124134=10816=5408\dfrac{1}{24}-\dfrac{1}{34}=\dfrac{10}{816}=\dfrac{5}{408}

Therefore, Option B is the correct answer. 

Video Explanation
CAT 2025 Score Booster Course - Enroll Now for Best CAT Preparation
CAT LRDI 100 Recorded Course - Master Logical Reasoning and Data Interpretation
HOME
CAT Sankalp Sale
Quant Revision Book
More
YoutubeWhatsapp