Question 22.

If f(x)=x27xf(x)=x^{2}-7 x and g(x) = x + 3 , then the minimum value of f(g(x)) − 3x is

A
- 20
B
-15
C
-12
D
-16
Previous Question
Rate this Solution

Question Explanation

Text Explanation

Now we have:

f(g(x))3xf(g(x))−3x

so we get f(x+3)3xf(x+3)-3x

= (x+3)27(x+3)3x(x+3)^2 - 7(x+3) - 3x

= x24x12x^2 - 4x - 12

Now minimum value of expression = D4a4acb24a-\frac{D}{4a}\frac{4ac-b^2}{4a}

We get - (16+48)/4(16+48)/4 = -16

Video Explanation
XAT 2026 Full Course - Enroll Now for Best XAT Preparation
CAT LRDI 100 Recorded Course - Master Logical Reasoning and Data Interpretation
HOME
XAT Sankalp Sale
Quant Revision Book
More
YoutubeWhatsapp