Question 20.

For some positive and distinct real numbers x,y and z, if 1y+z\frac{1}{\sqrt{y}+\sqrt{z}} is the arithmetic mean of 1x+z\frac{1}{\sqrt{x}+\sqrt{z}} and 1x+y\frac{1}{\sqrt{x}+\sqrt{y}}, then the relationship which will always hold true, is

A
x,y\sqrt{x}, \sqrt{y} and z\sqrt{z} are in arithmetic progression
B
x,z\sqrt{x}, \sqrt{z} and y\sqrt{y} are in arithmetic progression
C
y, x and z are in arithmetic progression
D
x,y and z are in arithmetic progression

Question Explanation

Text Explanation

Given that 1y+z \frac{1}{\sqrt{y} + \sqrt{z}} is the arithmetic mean of 1x+z \frac{1}{\sqrt{x} + \sqrt{z}} and 1x+y \frac{1}{\sqrt{x} + \sqrt{y}}

=> 2y+z=1x+z+1x+y \frac{2}{\sqrt{y} + \sqrt{z}} = \frac{1}{\sqrt{x} + \sqrt{z}} + \frac{1}{\sqrt{x} + \sqrt{y}}

=> 2(x+z)(x+y)=(y+z)(x+y+x+z) 2 \left(\sqrt{x} + \sqrt{z}\right) \left(\sqrt{x} + \sqrt{y}\right) = \left(\sqrt{y} + \sqrt{z}\right) \left(\sqrt{x} + \sqrt{y} + \sqrt{x} + \sqrt{z}\right)

=> 2(x+xy+xz+yz)=2xy+y+yz+2xz+yz+z 2 \left(x + \sqrt{xy} + \sqrt{xz} + \sqrt{yz}\right) = 2\sqrt{xy} + y + \sqrt{yz} + 2\sqrt{xz} + \sqrt{yz} + z

=> 2x=y+z 2x = y + z

=> y, x, z are in A.P. as x is the arithmetic mean of y and z.

Video Explanation
XAT 2026 Full Course - Enroll Now for Best XAT Preparation
CAT LRDI 100 Recorded Course - Master Logical Reasoning and Data Interpretation
HOME
XAT Sankalp Sale
Quant Revision Book
More
YoutubeWhatsapp