Question 2.ShareReportFor any natural number kkk, let ak=3ka_k = 3^kak=3k. The smallest natural number mmm for which {(a1)1×(a2)2×…×(a20)20}\{(a_1)^1 \times (a_2)^2 \times \ldots \times (a_{20})^{20}\} {(a1)1×(a2)2×…×(a20)20} < {a21×a22×…×a(20+m)} \{a_{21} \times a_{22} \times \ldots \times a_{(20+m)}\}{a21×a22×…×a(20+m)} is.A56B57C58D59Backspace7894561230.-Clear AllSubmit Previous QuestionRate this SolutionNext Question Question ExplanationVideo Explanation