Question 17.

For any non-zero real number x, let f(x)+2f(1x)=3xf(x) + 2f \left(\cfrac{1}{x}\right) = 3x. Then, the sum of all possible values of x for which f(x)=3f(x) = 3, is

A
3
B
-2
C
-3
D
2

Question Explanation

Text Explanation

We are given, f(x)+2f(1x)=3xf(x) + 2f \left(\cfrac{1}{x}\right) = 3x

Substituting 1x for x\frac{1}{x}\ for\ x

f(1x)+2f(x)=3xf\left(\dfrac{1}{x}\right)+2f\left(x\right)=\dfrac{3}{x}

Multiplying the second equation by 2 we will have 

2f(1x)+4f(x)=6x2f\left(\dfrac{1}{x}\right)+4f\left(x\right)=\dfrac{6}{x}

Subtracting the first equation from the second equation we have, 

3f(x)=6x3x3f\left(x\right)=\frac{6}{x}-3x

f(x)=2xxf\left(x\right)=\frac{2}{x}-x

We want the sum of values when this function equals 3, 

2xx=3\frac{2}{x}-x=3

x2+3x2=0x^2+3x-2=0

Since the discriminant is greater than zero, both values of x will be real, and we can directly take the sum of values of xx to be, 

31-\frac{3}{1}

Answer is -3. 

Video Explanation
CAT 2025 Score Booster Course - Enroll Now for Best CAT Preparation
CAT LRDI 100 Recorded Course - Master Logical Reasoning and Data Interpretation
HOME
CAT Sankalp Sale
Quant Revision Book
More
YoutubeWhatsapp