Question 16.

For all real numbers x the condition |3x - 20| + |3x - 40| = 20 necessarily holds if

A
6 < x < 11
B
7 < x < 12
C
10 < x < 15
D
9 < x < 14

Question Explanation

Text Explanation

Case 1 : x403x \ge \frac{40}{3}

we get 3x20+3x40=203x - 20 + 3x - 40 = 20

6x=806x = 80

x=806=403=13.33x = \frac{80}{6} = \frac{40}{3} = 13.33

Case 2 : 203x<403\frac{20}{3} \le x \lt \frac{40}{3}

we get 3x20+403x=203x - 20 + 40 - 3x = 20

we get 20=2020 = 20

So we get x[203,403]x \in \left[ \frac{20}{3}, \frac{40}{3} \right]

Case 3 : x<203x \lt \frac{20}{3}

we get 203x+403x=2020 - 3x + 40 - 3x = 20

40=6x40 = 6x

x=203x = \frac{20}{3}

but this is not possible

So we get from case 1, 2, and 3:

203x403\frac{20}{3} \le x \le \frac{40}{3}

Now looking at options,

we can say only option C satisfies for all xx.

Hence 7 < x < 12.

Video Explanation
XAT 2026 Full Course - Enroll Now for Best XAT Preparation
CAT LRDI 100 Recorded Course - Master Logical Reasoning and Data Interpretation
HOME
XAT Sankalp Sale
Quant Revision Book
More
YoutubeWhatsapp